DRO-1 Introduction to DRO

关于分布式鲁棒优化的学习note,用的是沙田苏文藻老师的notes。

Introduction : Optimization Under Uncertainty

Traditional Approach : Deterministic Problem

Given optimization problem

infxCf(x)f:RnRCRn\begin{array}{ll} \inf _{x \in C} f(x) & f: \mathbb{R}^n \rightarrow \mathbb{R} \\ & C \subseteq \mathbb{R}^n \end{array}

Typically, data are deterministic. However, in reality, data are often uncertain.

Example:

Consider manufacturing problem: cj=c_j= cost of jth j^{\text {th }} activity aij=a_{i j}= amount of ii ch commodity per unit of jthj^{t h} activity bi=b_i= output requirement of ith i^{\text {th }} commodity

mincx s.t. Ax=bx0\begin{aligned} \min && \quad & c^{\top} x \\ \text { s.t. } && A x&=b \\ && x &\geq 0 \end{aligned}

But , c,Ac,A can be uncertain !

Q: How to incoporate such data uncertainty into the optimization model?

Idea: Consider the uncertainty as a pertubation vector ξR\xi \in \mathbb{R}^{\ell}

minc(ξ)x s.t. A(ξ)x=bx0\begin{aligned} \min&& \quad c(\xi)^{\top}& x \\ \text { s.t. }&& A(\xi) x&=b \\ && x &\geq 0 \end{aligned}

Different Points of View

1. Stochastic Optimization

假设pertubation vector ξ\xi 服从一个特定的分布

minEξP[c(ξ)x] s.t. Prξ[A(ξ)x=b(ξ)]1δx0\begin{aligned} \min&& \mathbb{E}_{\xi \sim \mathbb{P}}&\left[c(\xi)^{\top} x\right]\\ \text { s.t. }&& \operatorname{Pr}_\xi[A(\xi) x=b(\xi)] &\geqslant 1-\delta\\ && x &\geqslant 0 \end{aligned}

  • Contraint 变为chance constraint ,with confidence level 1δ1-\delta

Difficulties:

  • Hard to evaluate EξP\mathbb{E}_{\xi \sim \mathbb{P}} or Prξ\operatorname{Pr}_\xi , high dimensional calculation
  • Usually the distribution is unknown

2. Robust Optimization

与随机优化不同,鲁棒优化不假设一个具体的分布,而是假设一个“可行空间”

ξ\xi belongs to a (bounded) set URl\mathcal{U} \subseteq \mathbb{R}^l (uncertainty set)

\begin{align*} \min \quad & t \\ \text{s.t.} \quad & c^{\top}(\xi) x \leqslant t \quad && \forall \xi \in \mathcal{U} \\ & A(\xi) x = b(\xi) \quad && \forall \xi \in \mathcal{U} \\ & x \geqslant 0 \end{align*}

  • Thus, a solution (x,t)\left(x^*, t^*\right) is robust against all possible ξU\xi \in \mathcal{U}.

Difficulties:

  • How to chosse U\mathcal{U}?
  • The solution usually too conservative.

3. Distributional Robust Optimization

Somewhere in-between! 即结合了一些随机优化的性质又有robust optimization的鲁棒性

ξ\xi : random vector with distributionP\mathbb{P}^* , P\mathbb{P}^* not exactly known, but some information about it is known.

Consider an uncertainty set of distributions P\mathscr{P} :

E.g. :

\begin{align*} &\min_x \max_{\mathbb{P} \in \mathscr{P}} \mathbb{E}_{\xi \sim \mathbb{P}}[c^{\top}(\xi) x] \\ &\operatorname{inf}_{\mathbb{P} \in \mathscr{P}} \operatorname{Pr}_{\xi \sim \mathbb{P}}[A(\xi) x=b(\xi)] \geqslant 1-\delta \end{align*}

Difficulties:

  • How to chosse P\mathscr{P} ?
  • Can the resulting problem be solved ?

Example: Robust Linear Constraint

考虑一个简单的robust constrain的例子,体验 “robust” 如何影响并改变constraint

RLC:

axba^{\top} x \leq b

(a,b)=(a0,b0) nominal  value +j=1lξj(aj,bj)perturbation ;ξURl\forall(a, b)=\underbrace{\left(a^0, b_0\right)}_{\substack{\text { nominal } \\ \text { value }}}+\underbrace{\sum_{j=1}^l \xi_j\left(a^j, b_j\right)}_{\text {perturbation }} ; \qquad \xi \in \mathcal{U}\subseteq \mathbb{R}^l

where aj,bj(j=0,1,,l)a^j, b_j(j=0,1, \cdots, l) are given.

Choice 1 : $\mathcal{U} = $ normal ball

U={yR,y1}U=\left\{y \in \mathbb{R}^{\ell},\|y\|_{\infty} \leq 1\right\}

(RLC)(a0)x+j=1ξj(aj)xb0+j=1ξjbjξ1j=1lξj((aj)xbj)b0(a0)xξ1maxξ:ξ1j=1lξj((aj)xbj)b0(a0)xj=1l(aj)xbjb0(a0)x\begin{aligned} (R L C) &\Leftrightarrow \quad\left(a^0\right)^{\top} x+\sum_{j=1}^{\ell} \xi_j\left(a^j\right)^{\top} x \leqslant b_0+\sum_{j=1}^{\ell} \xi_j b_j \quad \forall\|\xi\|_{\infty} \leq 1\\ & \Leftrightarrow \quad \sum_{j=1}^l \xi_j\left(\left(a^j\right)^{\top} x-b_j\right) \leqslant b_0-\left(a^0\right)^{\top} x \quad \forall\|\xi\|_{\infty} \leq 1 \\ & \Leftrightarrow \quad \max _{\xi:\|\xi\|_{\infty} \leq 1} \sum_{j=1}^l \xi_j\left(\left(a^j\right)^{\top} x-b_j\right) \leqslant b_0-\left(a^0\right)^{\top} x \\ & \Leftrightarrow \quad \sum_{j=1}^l\left|\left(a^j\right)^{\top} x-b_j\right| \leq b_0-\left(a^0\right)^{\top} x \end{aligned}

This can be converted into a finite system linear inequalities

Choice 2 : U={y<Rl:y21}\mathcal{U} = \left\{y<\mathbb{R}^l:\|y\|_2 \leqslant 1\right\}

(RLC)maxξ:ξ21ξj((aj)xbj)uξuj=(aj)xbjb0(a0)xu2ξ2 (Cauchy-Schwarz) u2(ξ21)[j=1l((aj)xbj)2]1/2b0(a0)x\begin{aligned} & (R L C) \Leftrightarrow \quad \max _{\xi:\|\xi\|_2 \leq 1} \underbrace{\xi_j\left(\left(a^j\right)^{\top} x-b_j\right)}_{u^{\top} \xi \quad u_j=\left(a^j\right)^{\top} x-b_j} \leqslant b_0-\left(a^0\right)^{\top} x \\ & \leqslant\|u\|_2 \cdot\|\xi\|_2 \quad \text { (Cauchy-Schwarz) } \\ & \leqslant\|u\|_2 \quad\left(\|\xi\|_2 \leqslant 1\right) \\ & \Leftrightarrow \quad\left[\sum_{j=1}^l\left(\left(a^j\right)^{\top} x-b_j\right)^2\right]^{1 / 2} \leqslant b_0-\left(a^0\right)^{\top} x \\ & \end{aligned}

So far, we seem to be lucky in that maxξu[]\max _{\xi \in u}[\cdots] has a closed form. In general, we do not expect this

Choice 3 U={yRl:Pyq}U=\left\{y \in \mathbb{R}^l: P y \leqslant q\right\} (a polyhedron)

(RLC)maxξ:Pξqj=1lξj((aj)xbj)b0(a0)x???\begin{aligned} (R L C) & \Leftrightarrow \max _{\xi: P \xi \leq q} \sum_{j=1}^l \xi_j\left(\left(a^j\right)^{\top} x-b_j\right) \leq b_0-\left( a^0\right)^{\top} x \\ & \Leftrightarrow \quad ? ? ? \end{aligned}

Perhaps LP duality can be applied here.

Summary

Lessons learned

  1. Complexity of the robust constraint depends on U\mathcal U
  2. duality theory is helpful in reformulating robust constraints into finite system of constraints
  3. even for robust linear constraints, their reformulations may not be linear \rightarrow need nonlinear optimization techniques