关于分布式鲁棒优化的学习note,用的是沙田苏文藻老师的notes。
 
  Introduction : Optimization Under Uncertainty 
  Traditional Approach : Deterministic Problem 
Given optimization problem
inf  x ∈ C f ( x ) f : R n → R C ⊆ R n \begin{array}{ll}
\inf _{x \in C} f(x) & f: \mathbb{R}^n \rightarrow \mathbb{R} \\
& C \subseteq \mathbb{R}^n
\end{array}
 inf  x ∈ C  f ( x )  f : R n → R C ⊆ R n  
Typically, data are deterministic . However, in reality, data are often uncertain.
Example: 
Consider manufacturing problem:
c j = c_j= c j  =   cost of j th  j^{\text {th }} j th    activity
a i j = a_{i j}= a i j  =   amount of i i i   ch commodity per unit of j t h j^{t h} j t h   activity
b i = b_i= b i  =   output requirement of i th  i^{\text {th }} i th    commodity
min  c ⊤ x  s.t.  A x = b x ≥ 0 \begin{aligned}
\min &&   \quad & c^{\top} x  \\
\text { s.t. } &&  A x&=b \\
&& x &\geq 0
\end{aligned}
 min  s.t.    A x x  c ⊤ x = b ≥ 0  
But , c , A c,A c , A   can be uncertain !
Q: How to incoporate such data uncertainty into the optimization model?
Idea: Consider the uncertainty as a pertubation vector ξ ∈ R ℓ \xi \in \mathbb{R}^{\ell} ξ ∈ R ℓ 
min  c ( ξ ) ⊤ x  s.t.  A ( ξ ) x = b x ≥ 0 \begin{aligned}
\min&&   \quad  c(\xi)^{\top}& x  \\
\text { s.t. }&&  A(\xi) x&=b \\
&& x &\geq 0
\end{aligned}
 min  s.t.    c ( ξ ) ⊤ A ( ξ ) x x  x = b ≥ 0  
  Different Points of View 
  1. Stochastic Optimization 
假设pertubation vector ξ \xi ξ   服从一个特定的分布
min  E ξ ∼ P [ c ( ξ ) ⊤ x ]  s.t.  Pr  ξ [ A ( ξ ) x = b ( ξ ) ] ⩾ 1 − δ x ⩾ 0 \begin{aligned} 
\min&& \mathbb{E}_{\xi \sim \mathbb{P}}&\left[c(\xi)^{\top} x\right]\\ 
\text { s.t. }&&  \operatorname{Pr}_\xi[A(\xi) x=b(\xi)] &\geqslant 1-\delta\\ 
&& x &\geqslant 0 
\end{aligned}
 min  s.t.    E ξ ∼ P  P r ξ  [ A ( ξ ) x = b ( ξ ) ] x  [ c ( ξ ) ⊤ x ] ⩾ 1 − δ ⩾ 0  
Contraint 变为chance constraint ,with confidence level 1 − δ 1-\delta 1 − δ  
 
Difficulties: 
Hard to evaluate E ξ ∼ P \mathbb{E}_{\xi \sim \mathbb{P}} E ξ ∼ P    or  Pr  ξ \operatorname{Pr}_\xi P r ξ    , high dimensional calculation 
Usually the distribution is unknown 
 
  2. Robust Optimization 
与随机优化不同,鲁棒优化不假设一个具体的分布,而是假设一个“可行空间”
ξ \xi ξ   belongs to a (bounded) set U ⊆ R l \mathcal{U} \subseteq \mathbb{R}^l U ⊆ R l   (uncertainty set)
\begin{align*}
\min \quad & t \\
\text{s.t.} \quad & c^{\top}(\xi) x \leqslant t \quad && \forall \xi \in \mathcal{U} \\
& A(\xi) x = b(\xi) \quad && \forall \xi \in \mathcal{U} \\
& x \geqslant 0
\end{align*}
Thus, a solution ( x ∗ , t ∗ ) \left(x^*, t^*\right) ( x ∗ , t ∗ )   is robust against all possible ξ ∈ U \xi \in \mathcal{U} ξ ∈ U  . 
 
Difficulties: 
How to chosse U \mathcal{U} U  ? 
The solution usually too conservative. 
 
  3. Distributional Robust Optimization 
Somewhere in-between! 即结合了一些随机优化的性质又有robust optimization的鲁棒性
ξ \xi ξ   : random vector with distributionP ∗ \mathbb{P}^* P ∗   , P ∗ \mathbb{P}^* P ∗   not exactly known, but some information about it is known. 
Consider an uncertainty set of distributions P \mathscr{P} P   :
E.g. :
\begin{align*}
&\min_x \max_{\mathbb{P} \in \mathscr{P}} \mathbb{E}_{\xi \sim \mathbb{P}}[c^{\top}(\xi) x] \\
&\operatorname{inf}_{\mathbb{P} \in \mathscr{P}} \operatorname{Pr}_{\xi \sim \mathbb{P}}[A(\xi) x=b(\xi)] \geqslant 1-\delta
\end{align*}
Difficulties: 
How to chosse P \mathscr{P} P   ? 
Can the resulting problem be solved ? 
 
  Example: Robust Linear Constraint 
考虑一个简单的robust constrain的例子,体验 “robust” 如何影响并改变constraint
RLC:
a ⊤ x ≤ b a^{\top} x \leq b a ⊤ x ≤ b 
∀ ( a , b ) = ( a 0 , b 0 ) ⏟  nominal   value  + ∑ j = 1 l ξ j ( a j , b j ) ⏟ perturbation  ; ξ ∈ U ⊆ R l \forall(a, b)=\underbrace{\left(a^0, b_0\right)}_{\substack{\text { nominal } \\ \text { value }}}+\underbrace{\sum_{j=1}^l \xi_j\left(a^j, b_j\right)}_{\text {perturbation }} ; \qquad \xi \in \mathcal{U}\subseteq \mathbb{R}^l ∀ ( a , b ) =  nominal   value   ( a 0 , b 0  )   + perturbation  j = 1 ∑ l  ξ j  ( a j , b j  )   ; ξ ∈ U ⊆ R l 
where a j , b j ( j = 0 , 1 , ⋯   , l ) a^j, b_j(j=0,1, \cdots, l) a j , b j  ( j = 0 , 1 , ⋯ , l )   are given.
  Choice 1 : $\mathcal{U} = $ normal ball 
U = { y ∈ R ℓ , ∥ y ∥ ∞ ≤ 1 } U=\left\{y \in \mathbb{R}^{\ell},\|y\|_{\infty} \leq 1\right\} U = { y ∈ R ℓ , ∥ y ∥ ∞  ≤ 1 } 
( R L C ) ⇔ ( a 0 ) ⊤ x + ∑ j = 1 ℓ ξ j ( a j ) ⊤ x ⩽ b 0 + ∑ j = 1 ℓ ξ j b j ∀ ∥ ξ ∥ ∞ ≤ 1 ⇔ ∑ j = 1 l ξ j ( ( a j ) ⊤ x − b j ) ⩽ b 0 − ( a 0 ) ⊤ x ∀ ∥ ξ ∥ ∞ ≤ 1 ⇔ max  ξ : ∥ ξ ∥ ∞ ≤ 1 ∑ j = 1 l ξ j ( ( a j ) ⊤ x − b j ) ⩽ b 0 − ( a 0 ) ⊤ x ⇔ ∑ j = 1 l ∣ ( a j ) ⊤ x − b j ∣ ≤ b 0 − ( a 0 ) ⊤ x \begin{aligned}
(R L C) &\Leftrightarrow \quad\left(a^0\right)^{\top} x+\sum_{j=1}^{\ell} \xi_j\left(a^j\right)^{\top} x \leqslant b_0+\sum_{j=1}^{\ell} \xi_j b_j \quad \forall\|\xi\|_{\infty} \leq 1\\
& \Leftrightarrow \quad \sum_{j=1}^l \xi_j\left(\left(a^j\right)^{\top} x-b_j\right) \leqslant b_0-\left(a^0\right)^{\top} x \quad \forall\|\xi\|_{\infty} \leq 1 \\
& \Leftrightarrow \quad \max _{\xi:\|\xi\|_{\infty} \leq 1} \sum_{j=1}^l \xi_j\left(\left(a^j\right)^{\top} x-b_j\right) \leqslant b_0-\left(a^0\right)^{\top} x \\
& \Leftrightarrow \quad \sum_{j=1}^l\left|\left(a^j\right)^{\top} x-b_j\right| \leq b_0-\left(a^0\right)^{\top} x
\end{aligned}
 ( R L C )  ⇔ ( a 0 ) ⊤ x + j = 1 ∑ ℓ  ξ j  ( a j ) ⊤ x ⩽ b 0  + j = 1 ∑ ℓ  ξ j  b j  ∀ ∥ ξ ∥ ∞  ≤ 1 ⇔ j = 1 ∑ l  ξ j  ( ( a j ) ⊤ x − b j  ) ⩽ b 0  − ( a 0 ) ⊤ x ∀ ∥ ξ ∥ ∞  ≤ 1 ⇔ ξ : ∥ ξ ∥ ∞  ≤ 1 max  j = 1 ∑ l  ξ j  ( ( a j ) ⊤ x − b j  ) ⩽ b 0  − ( a 0 ) ⊤ x ⇔ j = 1 ∑ l  ∣ ∣ ∣ ∣  ( a j ) ⊤ x − b j  ∣ ∣ ∣ ∣  ≤ b 0  − ( a 0 ) ⊤ x  
This can be converted into a finite system linear inequalities
  Choice 2 : U = { y < R l : ∥ y ∥ 2 ⩽ 1 } \mathcal{U} = \left\{y<\mathbb{R}^l:\|y\|_2 \leqslant 1\right\} U = { y < R l : ∥ y ∥ 2  ⩽ 1 }  
( R L C ) ⇔ max  ξ : ∥ ξ ∥ 2 ≤ 1 ξ j ( ( a j ) ⊤ x − b j ) ⏟ u ⊤ ξ u j = ( a j ) ⊤ x − b j ⩽ b 0 − ( a 0 ) ⊤ x ⩽ ∥ u ∥ 2 ⋅ ∥ ξ ∥ 2  (Cauchy-Schwarz)  ⩽ ∥ u ∥ 2 ( ∥ ξ ∥ 2 ⩽ 1 ) ⇔ [ ∑ j = 1 l ( ( a j ) ⊤ x − b j ) 2 ] 1 / 2 ⩽ b 0 − ( a 0 ) ⊤ x \begin{aligned}
& (R L C) \Leftrightarrow \quad \max _{\xi:\|\xi\|_2 \leq 1} \underbrace{\xi_j\left(\left(a^j\right)^{\top} x-b_j\right)}_{u^{\top} \xi \quad u_j=\left(a^j\right)^{\top} x-b_j} \leqslant b_0-\left(a^0\right)^{\top} x \\
& \leqslant\|u\|_2 \cdot\|\xi\|_2 \quad \text { (Cauchy-Schwarz) } \\
& \leqslant\|u\|_2 \quad\left(\|\xi\|_2 \leqslant 1\right) \\
& \Leftrightarrow \quad\left[\sum_{j=1}^l\left(\left(a^j\right)^{\top} x-b_j\right)^2\right]^{1 / 2} \leqslant b_0-\left(a^0\right)^{\top} x \\
&
\end{aligned}
  ( R L C ) ⇔ ξ : ∥ ξ ∥ 2  ≤ 1 max  u ⊤ ξ u j  = ( a j ) ⊤ x − b j  ξ j  ( ( a j ) ⊤ x − b j  )   ⩽ b 0  − ( a 0 ) ⊤ x ⩽ ∥ u ∥ 2  ⋅ ∥ ξ ∥ 2   (Cauchy-Schwarz)  ⩽ ∥ u ∥ 2  ( ∥ ξ ∥ 2  ⩽ 1 ) ⇔ [ j = 1 ∑ l  ( ( a j ) ⊤ x − b j  ) 2 ] 1 / 2 ⩽ b 0  − ( a 0 ) ⊤ x  
So far, we seem to be lucky in that max  ξ ∈ u [ ⋯   ] \max _{\xi \in u}[\cdots] max ξ ∈ u  [ ⋯ ]   has a closed form. In general, we do not expect this 
  Choice 3  U = { y ∈ R l : P y ⩽ q } U=\left\{y \in \mathbb{R}^l: P y \leqslant q\right\} U = { y ∈ R l : P y ⩽ q }   (a polyhedron) 
( R L C ) ⇔ max  ξ : P ξ ≤ q ∑ j = 1 l ξ j ( ( a j ) ⊤ x − b j ) ≤ b 0 − ( a 0 ) ⊤ x ⇔ ? ? ? \begin{aligned}
(R L C) & \Leftrightarrow \max _{\xi: P \xi \leq q} \sum_{j=1}^l \xi_j\left(\left(a^j\right)^{\top} x-b_j\right) \leq b_0-\left( a^0\right)^{\top} x \\
& \Leftrightarrow \quad ? ? ?
\end{aligned}
 ( R L C )  ⇔ ξ : P ξ ≤ q max  j = 1 ∑ l  ξ j  ( ( a j ) ⊤ x − b j  ) ≤ b 0  − ( a 0 ) ⊤ x ⇔ ? ? ?  
Perhaps LP duality can be applied here.
  Summary 
Lessons learned
Complexity of the robust constraint depends on U \mathcal U U  
duality theory is helpful in reformulating robust constraints into finite system of constraints 
even for robust linear constraints, their reformulations may not be linear → \rightarrow →   need nonlinear optimization techniques