DRO-2 Conic Linear Programming

在继续学习DRO之前,继续拓展对于Linear Programming 的知识。传统上“Linear Programming”是线性的,那么我们想让一个问题“less linear”, how should we make it ?

这一章节与“robust” 无关

Why Conic Linear Programming

Recall standard form of LP:

mincTxs.t.Ax=bx0\begin{aligned} & \min & & c^T x \\ & \text{s.t.} & & Ax = b \\ & & & x \geq 0 \end{aligned}

如何在这个模型中引入”非线性“?

conic linear programming,选择在相对简单易处理的 ”x0x\geq0“ 这一约束上做文章。

Q: Is this the only definition we can use to compare 2 vectors? Let us investigate the propoerties of the realation "\geq" ?

Algebraic View

"\geq" defines a good order if :

  1. Reflexivity: uuu\geq u , u\forall u

  2. Anti-symmetry:

    uvvu}u=v\left.\begin{array}{l} u \geqslant v \\ v \geqslant u \end{array}\right\} \Rightarrow u=v

  3. Transitivity:

    uvvw}uw\left.\begin{array}{l} u \geqslant v \\ v \geqslant w \end{array}\right\} \Rightarrow u \geqslant w

  4. Homogeneity:

    uvα0}αuαv\begin{aligned} & \left.\begin{array}{l} u \geqslant v \\ \alpha \geqslant 0 \end{array}\right\} \Rightarrow \alpha u \geqslant \alpha v \\ & \end{aligned}

  5. Additivity:

    uvwz}αu+wαv+z\begin{aligned} & \left.\begin{array}{l}u \geqslant v \\ w \geqslant z\end{array}\right\} \Rightarrow \alpha u+w \geqslant \alpha v+z & \end{aligned}

These 5 properties can help us prove Farkas Lemma and then prove "Strong Duality"

Geometric View

Consider

K={xRn:xi0i}=R+n\begin{aligned} K & =\left\{x \in \mathbb{R}^n: x_i \geqslant 0 \forall i\right\} \\ & =\mathbb{R}_{+}^n \end{aligned}

x0xR+nx \geqslant 0 \Leftrightarrow x \in \mathbb{R}_{+}^n in LPLP

This is a closed set. Moreover, this is also a "pointed cone".

Ponited Cone:

  1. Closed under addition: KϕK \neq \phi and u,vKu+vKu, v \in K \Rightarrow u+v \in K
  2. Conic: uK,α>0αuKu \in K, \alpha>0 \Rightarrow \alpha u \in K
  3. Pointedness: u,uku=0u,-u \in k \Rightarrow u=0

很显然R+n\mathbb{R}_{+}^n is a pointed cone.

We have 2 questions:

  • Is "\geq" the only ordering , satisifies those 5 properties?
  • Is R+n\mathbb{R}_{+}^n the only closed pointed cone with nonempty interior?

The answer is NO !

Examples:

  1. Lorentz Cone / Second-order cone:

    Qn+1={(t,x)R×Rn:tx2}Q^{n+1}=\left\{(t, x) \in \mathbb{R} \times \mathbb{R}^n: t \geqslant\|x\|_2\right\}

Claim: Qn+1Q^{n+1} is a closed pointed cone with int(Qn+1)int(Q^{n+1})\neq \emptyset

Define: Consider the order Qn+1\succeq_{Q^{n+1}} defined by

(t,x)Qn+1(s,y)(ts,xy)Qn+1(t, x) \succeq_{Q^{n+1}}(s, y) \Leftrightarrow (t-s, x-y) \in Q^{n+1}

Exercise: E $\succeq_{Q^{n+1}} $ is a good order.

  1. Semidefinite Cone: K=S+n={YSn:uYˉu0uRn}K=S_{+}^n=\left\{Y \in S^n: u^{\top} \bar{Y} u \geqslant 0 \forall u \in R^n \right\}

    • S+nS_{+}^n is a closed pointed cone with 0S+n0 \in S_{+}^n and int(S+n)ϕ\operatorname{int}\left(S_{+}^n\right) \neq \phi.
    • Consider the order " S+n\succeq_{S_{+}^n} " defined by

    xS+nyxyS+nx\succeq_{S_{+}^n} y \Leftrightarrow x-y \in S_{+}^n

Conic Linear Programming

With a closed pointed cone KK containing OO and having non-empty interior, we can formulate the following problem, known as conic LP:

\begin{align} & \inf_{x} & & \langle c, x \rangle \tag{P} \\ & \text{s.t.} & & \langle a_i, x \rangle = b_i, \\ & & & x \in K \end{align}

Here, ,\langle \cdot , \cdot \rangle is an inner product on some Euclidean space.

Similar to the traditional LP , the conic linear programming has a dual problem:

\begin{align} \tag{D} & \text{Sup} & \sum_{i=1}^{m} b_i y_i & \text{ where } b, y \in \mathbb{R}^m, \\ & & & b = (b_1, \ldots, b_m) \\ & & & y = (y_1, \ldots, y_m) \\ & \text{s.t.} & C - \sum_{i=1}^{m} y_i a_i & \in K^* \end{align}

Where k={y:x,y0xK}k^*=\left\{y:\langle x, y\rangle \geqslant 0 \quad \forall x \in K \right\} is the dual cone of KK

  • S+n,Qn,R+nS_{+}^n,Q^n ,\mathbb{R}_{+}^n are self dual

Examples:

1) SOCP

infcxs.t.Ax=b,xQn+1(P)\begin{aligned} \tag{P} & \inf & & \mathbf{c}^\top \mathbf{x} \\ & \text{s.t.} & & \mathbf{A}\mathbf{x} = \mathbf{b}, \\ & & & \mathbf{x} \in \mathbb{Q}^{n+1} \end{aligned}

supbys.t.Ci=1myiaiQn+1(D)\begin{aligned} \tag{D} & \sup & & \mathbf{b}^\top \mathbf{y} \\ & \text{s.t.} & & \mathbf{C} - \sum_{i=1}^{m} y_i \mathbf{a}_i \in \mathbb{Q}^{n+1} \end{aligned}

2) SDP

infCXs.t.AiX=bi,XS+n(P)\begin{aligned} \tag{P} & \inf & & \mathbf{C} \cdot \mathbf{X} \\ & \text{s.t.} & & \mathbf{A}_i \cdot \mathbf{X} = b_i, \\ & & & \mathbf{X} \in \mathbb{S}^n_+ \end{aligned}

supbys.t.Ci=1myiAiS+n(D)\begin{aligned} \tag{D} & \sup & & \mathbf{b}^\top \mathbf{y} \\ & \text{s.t.} & & \mathbf{C} - \sum_{i=1}^{m} y_i \mathbf{A}_i \in \mathbb{S}^n_+ \end{aligned}

Strong Duality in Conic Linear Programming

The lagrangian of Primal Problem:

(P)infxEsupyRm,wKc,x+i=1myi(biai,x)w,xLK(x,y,w)(P) \Leftrightarrow \inf_{x \in E} \sup_{y \in \mathbb{R}^m, w \in K^*} \underbrace{\left\langle c, x \right\rangle + \sum_{i=1}^m y_i \left( b_i - \left\langle a_i, x \right\rangle \right) - \left\langle w, x \right\rangle}_{\mathcal{L}_{K}(x, y, w)}

By changing order we can get:

supyRm,wKinfxEci=1myiaiw2x+i=1myibi(D)\sup_{y \in \mathbb{R}^m, w \in K^*} \inf_{x \in E} \left\langle c-\sum_{i=1}^m y_i a_i-w_2 x\right\rangle+\sum_{i=1}^m y_i b_i \Leftrightarrow (D)

Q: Is P=DP^* = D^* ? Can we just switch the order?

Conic Linear Programming

Primal Problem (P)

$v_p^* = \inf \{ \langle c, x \rangle \}$

such that $ \langle a_i, x \rangle = b_i$

$x \in K$

Dual Problem (D)

$v_d^* = \sup \{ b^T y \}$

such that $c - \sum_{i=1}^{m} y_i a_i \in K^*$

Theorem (Strong Duality for Conic LPs)

\begin{align*} \text{Suppose that} & \substack{ \color{blue}\text{(P) is bounded below}\\ \color{red} \text{ (D) is bounded above}} \text{ and is strictly feasible i.e., } \exists \text{ feasible } \substack{\color{blue}x\\\color{red}\tilde{y}} \text{ to } \substack{(P)\\(D)} \quad \text{s.t. } \substack{\color{blue}x \in \text{int}(K)\\\color{red}c - \sum_i \tilde y_i a_i \in \text{int}(K^*)} , &. \end{align*}

Then:

  • Vp=VDV_p^* = V_D^*
  • \begin{align*}\exists \text{ optimal } \substack{\color{blue}\text{Dual Solution } y^*\\\color{red}\text{Primal Solution } x^*} \text{ such that } \substack{\color{blue} b^{T}y^*\\\color{red} c^Tx^*} = V_P^* =V_D^*\end{align*}

Interestingly, P is strictly feasible didnt imply that there exist primal solution but it implies there exists dual optimal solution.

Example: infx>01x\inf _{x>0} \frac{1}{x}

  • doesn't exist xx^* but exist yy^*

Compare with LP Duality Theory

LP strong duality:

\begin{align*} \text{Suppose that} & \substack{\color{blue}\text{ (P) is bounded below}\\ \color{red}\text{ (D) is bounded above}} \text{ and is feasible }: \end{align*}

Then:

  • Vp=VDV_p^* = V_D^*.
  • Both (P) and (D) have optimal solutions.

使用conic linear programming的强对耦定理需要check !!!严格可行!!!。

Counter Example (Failure of Strong Duality):

thus 他的dual 问题为:

(D)\Leftrightarrowsup y1-y_1 s.t. y1+y21+(y1y2)24y1y21y1+y20y_1+y_2 \geqslant \sqrt{1+\left(y_1-y_2\right)^2} \Leftrightarrow \substack{4y_1y_2\geq 1\\y_1+y_2\geq 0}

可以看出,对于(D)问题,optimal下,令y1y_1 无限接近于0,最优值为0,但不存在最优解。

(D)({D})问题是否是严格feasible?of course.

while (P) 问题没有strictly feasible solution.